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In a recent paper, Chialvo and Debenedetti [Phys. Rev. A 43, 4289 (1991)] consider single-particle
and collective expressions due, respectively, to McQuarrie [Statistical Mechanics (Harper and Row,
New York, 1976)] and Helfand [Phys. Rev. 119, 1 (1960)] for the calculation of shear viscosities in
molecular-dynamics simulations. We point out an error in the discussion of origin independence in
this paper, and show that the prescriptions set out in it are not related to the shear viscosity.

PACS number(s): 61.20.Ja, 61.20.Lc, 66.20.+d

In a recent paper, Chialvo and Debenedetti [1] discuss
the relationship between the commonly accepted Einstein
relation for shear viscosity
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due to Helfand [2], and an expression
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which appears in McQuarrie’s book on statistical me-
chanics [3]. In both these expressions, V is the system
volume, T the temperature, and k is Boltzmann constant.
P=i(t) is the z component of the momentum of atom 7 at
time ¢, and z;(t) is its z coordinate. McQuarrie left the
proof of Eq. (2) as an exercise for the reader. Chialvo
and Debenedetti conjecture that the two expressions are
equivalent, although they do not attempt to prove this.
They provide simulation evidence that the difference be-
tween npeir and nmcq is small. If true, this would be
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a significant discovery, since the statistics of calculating
single-particle expressions such as Eq. (2) are far supe-
rior to those for collective quantities such as Eq. (1). It
would also be a remarkable theoretical development, link-
ing the motion of a single particle to a conservation law
for a collective quantity, namely the transverse momen-
tum density. This paper has started to attract interest
[4], although, to our knowledge, the McQuarrie formula
is not currently in common use.

The aims of this comment are fourfold: (i) to point
out an error in the argument presented by Chialvo and
Debenedetti regarding the origin dependence of the Mc-
Quarrie expression; (ii) to emphasize the absence of a
link between the single-particle variables and the con-
servation law for transverse momentum; (iii) to con-
firm that the values of “shear viscosity” calculated by
Chialvo and Debenedetti by molecular dynamics are in-
correct; (iv) to present an analysis which shows that the
values calculated this way are not intimately connected
with any transport coefficient. We aim to show that the
McQuarrie expression, as implemented by Chialvo and
Debenedetti, cannot be used to calculate the viscosity.
We do not address the conjecture that the Helfand and
McQuarrie forms might be equivalent, but it seems likely
that, as implemented by Chialvo and Debenedetti, the
Helfand expression is also incorrect. As usually imple-
mented, however, it is exactly equivalent to the standard
Green-Kubo expression, and is correct.

Chialvo and Debenedetti attempt to argue that the
long-time limit of the McQuarrie form is independent of
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a translation of coordinates. To do this they transform

it into
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Here m is the atomic mass. The Kronecker delta §;;
allows the formal conversion of a single sum into a double
one, over both ¢ and j. However, in their equation (3.6)
they equate this to

- A VkT<J" ) (Z” =0z 0)) >

with J2%(t) = SN | Pei(t)p.i(t)/m+ Fei(t)zi(t). In other
words, they retain the Kronecker delta 4;;, while at the
same time having summed separately over the index 7 to
define the quantity J7#(¢). This error renders the proof
of translational invariance void.

The ability to perform the summations over both i and
J is crucial to the argument linking the Einstein relation
with a transport coefficient and a conservation law in this
case. The discussion is most conveniently summarized [5,
6] using spatially Fourier-transformed variables, because
then the large-system (thermodynamic) and long-time
limits may be taken in a controlled way, in the correct or-
der, respectively, as £ — 0 and ¢ — oco. Expressions link-
ing a time correlation function integral (a Green-Kubo
relation) and an Einstein relation
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where the dot denotes time differentiation and AA(t) =
f; dt’A(t'), arise directly from a microscopic conserva-
tion relation of the kind d(k,t) = —ikjs(k,t), where
we take k to lie in the z direction for convenience, and
where jo(k,t) is well behaved in the low-k limit. This
guarantees that a(k,t) is a slowly evolving variable at
low k. Equations (3a) and (3b) follow, with A(¢) =
limy o ce(k,t)/(—ik) and A(t) = limg_,o cu(k,t)/(—ik) =
limg_,0 jo(k,t). This is the procedure by which the large-
system limit is correctly taken before the long-time limit
in Egs. (3a) and (3b); this is essential in order to
avoid reaching the conclusion that the transport coef-
ficient vanishes. In the case of shear viscosity, we have
a(k,t) = pa(k,t) = TN pai(t) exp{—ikz(t)}, the col-
lective momentum density, and ju(k,t) = P, (k,t), the
zx component of the k-dependent pressure tensor. The
proof that p.(k,t) = —ikP,.(k,t), and the precise form
of P, (k,t), are given in standard references [5,6]. Then,
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where F_;; is the £ component of the force between ¢ and
J (assumed pairwise additive) and z;; = z; — z; is the
interatomic separation. A, and its time integral AA(¢),
are clearly independent of the origin of coordinates. This
relies on the double summation, and momentum conser-
vation in the form of Newton’s third law F,;; = —Fgji

N N N N N

1
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This derivation does not go through for the single-particle
variables. The McQuarrie form of the Einstein rela-
tion, Eq. (2), takes the form of Eq. (3a) with A;(t) =
Pzi(t)zi(t) replacing A(t), and an additional factor of N
[to replace the sum in Eq. (2)]. No link of the form
A;(t) = limg_yo ci(k,t)/(~ik) has been demonstrated in
this case, nor does it seem obvious where one is to come
from. The single-particle A; variable is not translation-
ally invariant.

This origin dependence is important. In simulations
employing periodic boundary conditions, A in Eq. (5) is
computed with all pair sums calculated in the minimum
image convention. AA(t) is computed [7, 8] as the time
integral AA(t) = fot dt’ A(t'), and is also origin indepen-
dent. [It is a subtlety of periodic boundaries that this is
not equivalent to simply writing AA(t) = A(t) — A(0),
using Eq. (4) for A(t).] In this way, the mathematical
equivalence of the Einstein [Eq. (3a)] and Green-Kubo
[Eq. (3b)] prescriptions is preserved, and the time evolu-
tion of AA(t) is independent of the absolute position of
the box boundaries: nothing happens to AA(t), defined
in this way, as a consequence of a particle crossing a box
boundary. The single-particle AA;(t) cannot be written
in origin-independent form like this: as we have seen,
the double summation over 7 and j is essential. Instead,
Chialvo and Debenedetti do something quite different,
involving explicit effects of box boundary crossings, for
both single-particle and collective cases, and this differ-
ent prescription leads to erroneous results.

To see this, write A;(t) = pai(t)z:(t) where 2;(t) is
a coordinate located in the simulation box at time ¢ =
0, but then allowed to vary smoothly, throughout the
infinite checkerboard system modeled in the simulation,
without imposing periodic boundary conditions. Then
AA;(t) = [y dt'A;(t')) = Ai(t) — A;(0) may be used in
an Einstein relation. Averaging over initial conditions
gives a quantity (AA;(t)?) which increases linearly with
t. However this does not give the shear viscosity; it is
in fact a simple exercise to show that the gradient gives
pmD where D is the diffusion coefficient. This is not the
procedure Chialvo and Debenedetti adopt. Define also
A}(t) = pzi(t)zi(t) where now z.(t) is the periodically
imaged coordinate, defined to lie in a specified range,
e.g., —L/2 < 2i(t) < L/2, at all times (L is the box
length). We can relate this to z;(t) by

zi(t) = zi(t) — n;(t)L,

where n.;(t) is a staircase function (an infinite series of
unit step functions) giving the integer z label of the box
in which the freely diffusing particle i resides at time ¢.
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Al(t) is bounded, so clearly (AAl(t)?) does not increase
with t at large ¢: this also is not a route to . The time
derivatives A.(t) and A;(t) are related by

Ai(t) = A,(t) - i)z,‘(t)'nzi (t)L - pzi(t)hzi(t)L.
Al(t) suffers a step-function discontinuity whenever par-
ticle 7 crosses a box boundary. Its time derivative A/(t)
contains both step-function (from n.;) and d-function
(from 7n,;) discontinuities when this occurs. In their pa-
per, following their Eq. (3.11), Chialvo and Debenedetti
describe their prescription for handling periodic bound-
aries. It is easy to see that this corresponds to using a

variable whose time derivative is identical with A’(t), but
from which the § function term is dropped:

AP () = Ai(t) — pai(t)n.i(t)L (6a)
= Aj(t) + pai(t)hzi(t) L. (6b)

To see this, simply integrate Eq. (6b) over one time step
from t, to t,y;. If no boundary crossing occurs in this
time step, the change j;tn"“ dt ASP(t) is identical with
Al(tn4+1) — Al(tn), and this is consistent with instruction
(a) of the original paper, together with the imposition of
periodic boundary corrections in instruction (b) of the
previous step. If a boundary crossing does occur, the
step discontinuity in A} is correctly removed at the mo-
ment of crossing [as per instructions (b) and (c) of the
original paper| by the extra term in p;n.;L, and hence
does not contribute to the accumulated change AASP.
The only difference is that, in the algorithm, the peri-
odic imaging operation is postponed until the end of the
time step, rather than being performed at the exact mo-
ment of boundary crossing. This unavoidably introduces
an (algorithm discretization) error, but this vanishes as
8t = tp41 — t, — 0, and so is insignificant. The time in-
tegral AASP(t) = fot dt’ ASP(t') is used in the “McQuar-
rie” expression. Note that AFP(t) suffers a step-function
discontinuity whenever a boundary crossing occurs. The
same applies to its collective counterpart, obtained by
summing over ¢, and used in the prescription that Chialvo
and Debenedetti call “Helfand.” This is quite different
from the behavior of variables used in the Green-Kubo
expression, and from the Helfand expression using the
time-integrated form for AA(t): these variables change
smoothly with time. No justification has been presented
for associating the variable ASP(t) with any transport

coefficient, and below we show that there is none. First,
however, we check Chialvo and Debenedetti’s simulation
results.

We have repeated the molecular-dynamics (MD) sim-
ulations of Ref. [1] at the state point T* = kT /e = 2.75,
p* = po® = 0.7, (¢ and o being the Lennard-Jones well
depth and diameter, respectively) first studied in detail
by Holian and Evans [9], but using precisely the poten-
tial, system size N = 108, and simulation parameters
of Chialvo and Debenedetti. We have calculated n by
Helfand’s expression, with time-integrated A A(t), by the
equivalent Green-Kubo expression, and by nonequilib-
rium molecular dynamics [9]. We have also evaluated
McQ and 7geis by the Chialvo and Debenedetti prescrip-

tions. Run lengths were t}, = trunW = 150 for
equilibrium MD (5 x 10° steps of 0.003 units each), and
trun = 200-2000 for nonequilibrium MD, depending on
shear rate. Our results appear in Table I, and typical
mean-squared displacement curves are shown in Fig. 1.
We have succeeded in reproducing the values of Chialvo
and Debenedetti of nmcq and 7nger. Our results for 7,
however, do not agree with theirs, corresponding instead,
rather closely, with those of Holian and Evans. The
discrepancy, a factor of approximately 1.7, is therefore
not attributable to differences in potential truncation as
Chialvo and Debenedetti suggest: it is a consequence of
their method. Other simulations at different state points
(not reported here) bear out the view that there is not
a close connection between 7ycq (or nHelr) and 7; more-
over Mcq and nHels grow quite noticeably with increasing
system size, whereas n does not.

Secondly, we have carried out Brownian-dynamics
(BD) simulations in periodic boundary conditions. This
entails the numerical solution of the Langevin equation
for N = 108 independent, freely diffusing atoms in three
dimensions [10]. The only input parameters are the tem-
perature T, diffusion coefficient D, particle mass m, and
the box dimensions. nmc.q was calculated exactly as in
the molecular-dynamics simulations. A typical mean-
square displacement curve, for T* = 2.75, p* = 0.7, and
with the correct diffusion coefficient D* = D/m/eo? =
0.26 [11-13], is shown in the figure. This curve agrees
surprisingly well with the MD result: the short-time be-
havior is accurately reproduced, and the long-time gradi-
ent is correct within 14%. More surprising (see the table)
are the consequences of varying D, T, and p (hence L):

TABLE I. Results of equilibrium and nonequilibrium molecular-dynamics simulations, and of
Brownian-dynamics simulations. For each state point (p*,T") we tabulate the diffusion coefficient
D* (measured in MD, input as a parameter in BD), and the viscosity as measured conventionally,
n", and by the “McQuarrie” prescription, 7y.q- The nonequilibrium results have been extrapolated
to zero shear rate. All results are in Lennard-Jones reduced units.

Method p* T D* n* MMeQ nMeq/LpvVmkT
MD(eq) 0.7 2.75 0.26 1.18 2.11 0.34
MD(ne) 0.7 2.75 1.27

BD 0.7 2.75 0.26 1.88 0.30

BD 0.7 5.5 0.26 2.68 0.30

BD 0.7 2.75 1.04 1.86 0.30

BD 5.6 2.75 0.26 7.69 0.31
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FIG. 1. Viscosity mean-squared displacements
(2VEkT) (A A(t)?) [see Eq. (3a)] as calculated by the con-
ventional method in a molecular-dynamics simulation (solid
line), by the Chialvo and Debenedetti “McQuarrie” prescrip-
tion in molecular dynamics (dashed line) and by the same
prescription in Brownian-dynamics (dashed-dotted line), at
the Holian-Evans state point. Variables are in Lennard-Jones
reduced units.

nMcq (BD) is independent of D, and conforms quite well
to the empirical formula

McQ = 0.3LpVmkT (BD) )

over a wide range of parameters. This suggests that the
BD values of nucq have little to do with any dynamical
properties, certainly not the viscosity, and that the same
may be true of the MD results.

To understand this, we present an analysis of the
time evolution of the Chialvo and Debenedetti variable
APP(t). We have

miea = 5 [ dt (ASP®)ASP(0)).

It is convenient to start from Eq. (6b), define A;(t) =
Pei(t)n2:(t)L, and write ASP(t) = Al(t) + Ai(t) . Since
A is bounded, the infinite time integrals of (A (t)A(0)),
and both the cross terms between A and .A4;, will be
identically zero. Thus

maca = i [ dt (Au(014:0))

= %;ﬁ /0 Tt (e (t)pei(0)ei(Dni(0)) . (8)

Here 1.i(t) = v,:(t) Y., 8(2i(t) — zp) where we sum over
the positions z; of all the box boundaries. However, the
maximum time ¢, out to which correlations are studied
by Chialvo and Debenedetti is short (¢}, = 8) compared
with the time tpox =~ L2/2D (here t}, =~ 50) required
for an atom to diffuse the length of the simulation box.
Moreover [because of the decay of the p.;(t) correlations]
the integrand in Eq. (8) will fall to zero in a time of
order t, = mD/kT, the velocity correlation time (here,
ty = 0.1). Hence we may restrict our interest to cross-
ings and recrossings of a single boundary, and we write

72i(t) = v,i(t)8(z:(t)), placing the boundary at the ori-
gin for convenience.

There is a static, t = 0, contribution to the integral of
Eq. (8). Here we may rigorously factorize the = and 2
parts, and write

maca(static) = 22 [ dt (pas(£)pes (0)) (s (£)7225(0))
kT Jo

= I*m / " dt (s (£):(0)) (9)

where ¢ is a small positive time, and we use (p2,) = mkT.
This is handled by standard methods for barrier crossings
[14]:

nMcq(static) = L?pm (An.;(e)n.:(0))

= L2pm (An.()vs:(0)3(2:(0)))

The § function localizes the atom at the boundary.
Atoms may depart in either direction: An,;(¢) will be
+1 if v,;(0) is positive and —1 if it is negative. Thus

Mcq (static) = L?pm (|v2:(0)|6(2:(0))) -

We separate configurational and velocity averages, write

(8(2i(0))) = L~ and (|v.i|) = /kT/27m, to give
MMcQ(static) = Lpy/mkT /27 = 0.40LpVmkT . (10)

For the Holian-Evans state point, T* = 2.75, p* = 0.7,
L* = 5.363, and ny.q(static) = 2.48, overestimating the
value quoted by Chialve and Debenedetti by about 14%.
This is an exact result, and it turns out to be the domi-
nant contribution to 7Mcq; evidently it has nothing to do
with shear viscosity, nor indeed the details of the inter-
atomic potential. The divergent dependence on system
size (o< L) also shows that the result cannot be related to
a statistical mechanical property in the thermodynamic
limit.

Note that, although this term arises at short times in
our analysis, this is only because we have split ASD(t)
into Al(t) and A;(t). The terms involving A/(t) will ap-
pear in the evolution of (AASP(t)?) at short times, but
they will all cancel exactly within a time of order ¢,. Our
analysis simply gives the limiting gradient at long times,
through Eq. (8).

To analyze the remaining, dynamic, contribution to
the integral of Eq. (8), we make the Gaussian approxi-
mation [5]. This is exact at short and long times, and
in error by only a few percent in between. We use it
here to give a guide to the expected results. Within this
approximation we may immediately factorize:

2 oo
Mcq(dynamic) = 2L [ db(pyi(t)pei(0)) (hus (B (0))
2 oo
= | dputpao)

X (024 (t)v2i(0)8(2:(8))8(2:(0))) - (11)

We may use origin independence to average over initial
z coordinates, giving
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Mcq(dynamic) =

If_:‘r’ / = (P2i(t)P=i(0))

X (v2i(t)vzi(0)8(Azi(t)))
where Az;(t) = 2i(t) — 2z;(0). Now insert the inte-
gral representation of the delta function §(Az;(t)) =
(2m)~t [%° dk exp{ikAz;(t)} to give

L Lp (™
7Mcq(dynamic) = g;kﬁf / dt (pzi(t)p=i(0))
y / @k (vi(0)vsi(0)e 270

The second average is proportional to the double time]

COMMENTS 49

derivative of the intermedia.te scattering function

gt [t alps(0)

x/ dk k21 (k,t)

where I4(k,t) (exp{itkAz;(t)}) . In turn, within
the Gaussian approximation, this may be expressed in
terms of the velocity autocorrelation function. De-

fine for convenience C,(t) = (v.:(t)v.i(0)), f,l)(t) =
fot dt' C,(t), and C2(t) = ft dt' ¢SV (). We have
(Pai(t)p=i(0) = m*Cy(t), CP(t) = (Az(t)?)/2, and
I(k,t) = exp{—kzc'i(,z)(t)}. Thus we may write

Meq(dynamic) =

L 2 2
neq(dynamic) = 2”;"7, / dt Cy / dk [RCP(1) — 0u(1)] 00, (12)
Performing the integrals over k gives
mkT 3/2 c},l)(t)2
Meq(dynamic) = —Lp / —Cy(t)] 7 - 13
al ez ,/20(2) 202 1

The term in curly brackets is a pure number. It may be
evaluated for a simple Brownian motion model, C,(t) =
(kT /m) exp{—t/t,}, where it gives

nMcq(dynamic) = —0.22Lp/mkT /27
— —0.09LpVmkT

This, then, is a negative correction of about 20% to the
static part, Eq. (10), and it is independent of ¢, (hence,
D). The overall result is

MMeq = 0.78Lpy/mkT /2% = 0.31LpvVmkT (BD).

This explains the Brownian-dynamics results, Eq. (7),
entirely in terms of static quantities. A more accurate
estimate of Nmcq(dynamic) can be made from C,(t), as
calculated in the MD simulation, by performing the in-
tegral of Eq. (13) numerically. This will be accurate
apart from non-Gaussian corrections. The result, at the
Holian-Evans state point, is

Meq(dynamic) ~ —0.19Lpy/mkT /2w
= —0.08LpVmkT

so the overall estimate is

MMcQ = 0.81Lpy/mkT /27w = 0.32LpvmkT (MD).

(BD).  (14)

(MD) (15)

In reduced units this is ny.q = 2.01, in good agreement
with the values calculated by Chialvo and Debenedetti,
and confirmed in the table.

In conclusion, we have shown that the McQuarrie ex-
pression, as implemented by Chialvo and Debenedetti, is
not a suitable route to the shear viscosity in computer
simulations; indeed it seems not to be related to trans-
port at all. Our analysis indicates that it is poorly be-
haved in the thermodynamic limit (proportional to box
length L). Within a Brownian motion model, the result
is quite well determined by static quantities, and is un-
related to the details of the intermolecular potential; a
more accurate estimate (within the Gaussian approxima-
tion) may be made with a knowledge of the velocity auto-
correlation function. The problem lies with the definition
of the dynamical variable used in this expression, and
the way periodic boundaries are handled. For the single-
particle case, there seems to be no better alternative,
and we believe that there is no single-particle route to
this collective transport coefficient. We have not proved
anything regarding the Helfand expression, but it seems
likely that this also is incorrect, if periodic boundaries
are handled in this way. The formal Helfand expression,
with AA(t) calculated by time-integrating the pressure
tensor, is mathematically equivalent to the conventional
Green-Kubo expression, and is correct.
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